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Annual report

Australian Group on Antimicrobial Resistance (AGAR) 
Australian Staphylococcus aureus Sepsis Outcome 
Programme (ASSOP) Annual Report 2020
Geoffrey W Coombs, Denise A Daley, Nicholas W T Yee, Princy Shoby, Shakeel Mowlaboccus, on behalf of the Australian Group on 
Antimicrobial Resistance

Abstract

From 1 January to 31 December 2020, forty-nine institutions around Australia participated in the 
Australian Staphylococcus aureus Sepsis Outcome Programme (ASSOP). The aims of ASSOP 2020 
were to determine the proportion of Staphylococcus aureus bacteraemia (SAB) isolates in Australia 
that were antimicrobial resistant, with particular emphasis on susceptibility to methicillin; and to 
characterise the molecular epidemiology of the methicillin-resistant isolates. A total of 2,734 SAB epi-
sodes were reported, of which 79.7% were community-onset. Of S. aureus isolates, 17.6% were methi-
cillin resistant. The 30-day all-cause mortality associated with methicillin-resistant SAB was 14.2%, 
which was not significantly different from the 13.3% mortality associated with methicillin-suscep-
tible SAB (p = 0.6). With the exception of the β-lactams and erythromycin, antimicrobial resistance 
in methicillin-susceptible S. aureus was rare. However, in addition to the β-lactams, approximately 
35% of methicillin-resistant S. aureus (MRSA) were resistant to erythromycin, 33% to ciprofloxacin, 
13% to tetracycline, 13% to gentamicin and 4% to co-trimoxazole. When applying the European 
Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints, teicoplanin resistance 
was detected in four S. aureus isolates. Resistance was not detected for vancomycin and linezolid. 
Resistance to non-beta-lactam antimicrobials was largely attributable to two healthcare-associated 
MRSA (HA-MRSA) clones: ST22-IV [2B] (EMRSA-15) and ST239-III [3A] (Aus-2/3 EMRSA). The 
ST22-IV [2B] (EMRSA-15) clone is the predominant HA-MRSA clone in Australia. However, 85% 
percent of methicillin-resistant SAB isolates were community-associated MRSA (CA-MRSA) clones. 
Although polyclonal, approximately 77% of CA-MRSA clones were characterised as: ST93-IV [2B] 
(Queensland CA-MRSA); ST5-IV [2B]; ST45-V [5C2&5]; ST1-IV [2B]; ST30-IV [2B]; ST8-IV [2B]; 
and ST97-IV [2B]. The CA-MRSA clones, in particular ST45-V [5C2&5], have acquired multiple anti-
microbial resistance determinants including ciprofloxacin, erythromycin, clindamycin, gentamicin 
and tetracycline. The multi-resistant ST45-V [5C2&5] clone accounted for 11.0% of CA-MRSA. As 
CA-MRSA is well established in the Australian community, it is important to monitor antimicrobial 
resistance patterns in community- and healthcare-associated SAB as this information will guide 
therapeutic practices in treating S. aureus sepsis.

Keywords: Australian Group on Antimicrobial Resistance (AGAR); antimicrobial resistance surveil-
lance; Staphylococcus aureus, methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-
resistant Staphylococcus aureus (MRSA), bacteraemia
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Background

Globally, Staphylococcus aureus is one of the 
most frequent causes of hospital-acquired and 
community-acquired bloodstream infections.1 
Although there are a wide variety of manifesta-
tions of serious invasive infection caused by S. 
aureus, in the majority of these cases the organ-
ism can be detected in blood cultures. Therefore, 
S. aureus bacteraemia (SAB) is considered a very 
useful marker for serious invasive infection.2

Although prolonged antimicrobial therapy 
and prompt source control are used to treat 
SAB,3 mortality ranges from as low as 2.5% 
to as high as 40%.4–6 Mortality rates, however, 
are known to vary significantly with patient 
age, clinical manifestation, comorbidities and 
methicillin resistance.7,8 A prospective study of 
SAB conducted in 27 laboratories in Australia 
and New Zealand found a 30-day all-cause 
mortality of 20.6%.9 On univariate analysis, 
increased mortality was significantly associated 
with: older age; European ethnicity; methicil-
lin resistance; infections not originating from a 
medical device; sepsis syndrome; pneumonia/
empyema; and treatment with a glycopeptide or 
other non-β-lactam antibiotic.

The Australian Group on Antimicrobial 
Resistance (AGAR), a network of laborato-
ries located across Australia, commenced 
surveillance of antimicrobial resistance in S. 
aureus in 1986.10 In 2013, AGAR commenced 
the Australian Staphylococcus aureus Sepsis 
Outcome Programme (ASSOP).11 The primary 
objective of ASSOP 2020 was to determine the 
proportion of SAB isolates demonstrating anti-
microbial resistance, with particular emphasis 
on:

1. assessing susceptibility to methicillin; and

2. the molecular epidemiology of methicillin-
resistant S. aureus (MRSA).

Methodology

Participants

Thirty laboratories servicing 49 institutions 
from all Australian states and mainland 
territories.

Collection period

From 1 January to 31 December 2020, the 30 
laboratories collected all S. aureus isolated from 
blood cultures. When isolated from a patient’s 
blood culture within 14 days of the first positive 
culture, S. aureus isolates with the same antimi-
crobial susceptibility profiles were excluded. A 
new S. aureus sepsis episode in the same patient 
was recorded if it was identified by a culture of 
blood collected more than 14 days after the last 
positive culture. Data were collected on age, sex, 
date of admission and discharge (if admitted), 
and mortality at 30 days from date of first posi-
tive blood culture. To avoid interpretive bias, no 
attempt was made to assign attributable mortal-
ity. Each episode of SAB was designated health-
care-onset if the first positive blood culture(s) in 
an episode were collected more than 48 hours 
after admission.

Laboratory testing

Participating laboratories performed antimi-
crobial susceptibility testing using the Vitek2

®

 
(bioMérieux, France) or BD Phoenix™ (Becton 
Dickinson, USA) automated microbiology sys-
tems according to the manufacturer’s instruc-
tions. Identification of S. aureus was achieved 
by matrix-assisted laser desorption ionization 
(MALDI) using either the Vitek MS

®

 (bioMé-
rieux, France) or the MALDI Biotyper (Bruker 
Daltonics, Germany). Appropriate growth on 
chromogenic agar or polymerase chain reac-
tion (PCR) for the presence of the nuc gene was 
performed in some instances for confirmation.

Minimum inhibitory concentration (MIC) 
data and isolates were referred to the 
Antimicrobial Resistance and Infectious 
Diseases (AMRID) Research Laboratory at 
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Murdoch University. Clinical and Laboratory 
Standards Institute (CLSI)12 and European 
Committee on Antimicrobial Susceptibility 
Testing (EUCAST)13 breakpoints were utilised 
for interpretation. Linezolid and daptomycin 
non-susceptible isolates were retested by Etest

®

 
(bioMérieux) using the Mueller-Hinton agar 
recommended by the manufacturer. The control 
strain used was S. aureus ATCC

®

 29213. High-
level mupirocin resistance was determined by 
the BD Phoenix™, or by using a mupirocin 
200 μg disk according to CLSI guidelines, on 
all isolates with a mupirocin MIC > 8 mg/L by 
Vitek2

®

. Multi-resistance was defined as resist-
ance to three or more of the following non-β-
lactam antimicrobials: vancomycin, teicopla-
nin, erythromycin/clindamycin, tetracycline, 
ciprofloxacin, gentamicin, co-trimoxazole, 
fusidic acid, rifampicin, high level mupirocin, 
and linezolid.

Molecular testing was performed by whole 
genome sequencing using the NextSeq 500 
platform (Illumina, USA). Sequencing results 
were analysed using the Nullarbor pipeline.14 
SCCmec was determined using KmerFinder 
v3.2,15 and the SCCmec database curated from 
the CGE database.16,17

Confidence intervals (CI) for proportions, 
Fisher’s exact test for categorical variables, and 
chi-square test for trend were calculated, as 
appropriate, using MedCalc for Windows, ver-
sion 12.7 (MedCalc Software, Belgium).

Approval to conduct the prospective data collec-
tion was given by the research ethics committee 
associated with each participating laboratory.

Results

From 1 January to 31 December 2020, there 
were 2,734 unique episodes of SAB identified. A 
significant difference (p < 0.0001) was observed 
in patient sex with 1,823 (66.7%) being male 
(95% CI: 64.9–68.5). The mean age of patients 
was 56 years, ranging from 0 to 102 years, 
with a median age of 61 years. Overall, 2,180 
episodes (79.7%) were community-onset (95% 

CI: 78.1–81.2). All-cause mortality at 30 days 
(where known) was 13.5% (95% CI: 12.1–15.0). 
Methicillin-resistant SAB mortality was 14.2% 
(95% CI: 12.7–15.7); methicillin-susceptible 
SAB mortality was 13.3% (95% CI: 11.9–14.8).

Methicillin-susceptible Staphylococcus 
aureus (MSSA) antimicrobial 
susceptibility

Overall, 2,253 of the 2,734 isolates (82.4%) were 
methicillin susceptible, of which 1,714/2,247 
(76.3%) were penicillin resistant (MIC > 0.12 
mg/L). However, as β-lactamase was detected 
in 57 phenotypically penicillin-susceptible iso-
lates, 79.0% of MSSA were considered penicillin 
resistant. Eleven penicillin-susceptible isolates 
were not available for β-lactamase testing. 
Apart from erythromycin resistance (12.2% and 
12.6% using CLSI and EUCAST breakpoints 
respectively), resistance to the non-β-lactam 
antimicrobials amongst MSSA was rare, rang-
ing from 0% to 3.6% (Table 1). There were nine 
isolates reported by Vitek2

®

 as non-susceptible 
to daptomycin (MIC > 1.0 mg/L). By Etest

®

, five 
of the nine isolates were considered daptomycin 
susceptible (MICs 0.19–1.0 mg/L). The four 
isolates with Etest

® MICs of 1.5 and 2.0 mg/L 
were considered non-susceptible by CLSI and 
resistant by EUCAST interpretive criteria. 
Polymorphisms in genes encoding mprF, walK, 
walR, cls, rpoB, rpoC, pgsA and agrA were inves-
tigated. Mutations in mprF were identified in 
three of the four isolates. No known mutations 
were detected in the remaining isolate.

By Vitek2
®

 or BD PhoenixTM, six isolates were 
reported as linezolid resistant (MIC > 4 mg/L). 
By Etest

®

, the six isolates had MICs ranging 
between 0.5 and 1.0 mg/L and were there-
fore considered linezolid susceptible. Using 
EUCAST interpretive criteria, 34 isolates were 
reported by Vitek2

®

 as resistant to teicoplanin 
(MIC > 2.0 mg/L). By Etest

®

, 32 of the 34 iso-
lates had a teicoplanin MIC of ≤ 2.0 mg/L. The 
two isolates with MICs of 3.0 and 4.0 mg/L were 
considered resistant. All MSSA were vancomy-
cin susceptible. Only 1,744 (77.4%) of the 2,253 
MSSA had mupirocin susceptibility testing 
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performed, of which 17 (1.0%) were high-level 
mupirocin resistant. Twelve of the seventeen 
isolates were referred from Queensland. Nine 
of the seventeen mupirocin-resistant MSSA 
were also resistant to fusidic acid. Of the 2,249 
isolates tested, 37 (1.7%) and 40 (1.8%) were 
constitutively resistant to clindamicin by CLSI 
and EUCAST criteria respectively. Both consti-
tutive and inducible resistance was identified in 
230 (10.2%) and 240 (10.7%) isolates by CLSI 
and EUCAST criteria respectively. Only 3% of 
MSSA were multi-resistant. By Vitek2

®

 or BD 
PhoenixTM, forty-three isolates were reported 
as non-susceptible to cotrimoxazole. By disc 
susceptibility testing, 37/43 (86.1%) and 36/43 
(83.7%) were found to be susceptible by CLSI 
and EUCAST criteria respectively.

MRSA antimicrobial susceptibility

The proportion of S. aureus that were MRSA 
was 17.6% (95% CI: 16.2–19.1). Of the 481 
MRSA identified, 425 were cefoxitin-screen 
positive by Vitek2

®

 and 56 had a cefoxitin MIC 
> 4.0 mg/L by BD Phoenix™. Two of the 481 
MRSA isolates were phenotypically penicillin 
susceptible (MIC ≤ 0.125 mg/L). In one of these 
two isolates, β-lactamase was detected; the 
other isolate was not available for susceptibil-
ity confirmation. Amongst the MRSA isolates, 
resistance to non-β-lactam antimicrobials was 
common, except for resistance to rifampicin, 
nitrofurantoin, cotrimoxazole and fusidic 
acid which ranged from 0% to 4.4% (Table 
2). All MRSA were vancomycin and linezolid 
susceptible. Four isolates were reported by 
Vitek2

®

 as daptomycin non-susceptible (MIC 
> 1.0 mg/L). By Etest

®

, two of the four isolates 
were considered daptomycin susceptible (MICs 
0.5 and 1.0 mg/L). The remaining two isolates 
were confirmed as non-susceptible by CLSI and 
resistant by EUCAST criteria (MICs 2.0 mg/L). 
Polymorphisms in genes encoding mprF, walK, 
walR, cls, rpoB, rpoC, pgsA and agrA were inves-
tigated. Mutations in mprF were identified in 
one isolate. No known mutations were detected 
in the second isolate.

By Vitek2
®

, six isolates were reported as teicopla-
nin resistant according to the EUCAST resist-
ant breakpoint of > 2 mg/L, with MICs of 4.0 
mg/L (five isolates) and 8.0 mg/L (one isolate). 
However, using the CLSI resistant breakpoint of 
> 8 mg/L, the six isolates were all classified as 
susceptible. By Etest

®

, five of the six isolates were 
considered susceptible, with MICs of 1.5 mg/L 
and 2.0 mg/L, and the remaining isolate, with 
an MIC of 4.0 mg/L, was resistant by EUCAST 
criteria. Four of 327 MRSA isolates tested (1.2%) 
had high-level mupirocin resistance.

Of the 480 isolates tested, 53 (11.0%) were con-
stitutively resistant to clindamycin; 132 (27.5%) 
and 137 (28.5%) were classified as having both 
constitutive and inducible clindamycin resist-
ance by CLSI and EUCAST criteria respectively.

By Vitek2
®

 or BD PhoenixTM, 69 isolates were 
reported as non-susceptible to cotrimoxazole. 
By disc susceptibility testing, 45/66 (68.2%) and 
43/66 (65.2%) were found to be susceptible by 
CLSI and EUCAST criteria respectively. Three 
isolates were not available for confirmation.

Multi-resistance was seen in 21.4% of MRSA.

MRSA molecular epidemiology

Whole genome sequencing was performed on 
456 of the 481 MRSA (94.8%). Based on molecu-
lar typing, 69 (15.1%) and 387 (84.9%) of isolates 
were identified as healthcare-associated MRSA 
(HA-MRSA) and community-associated MRSA 
(CA-MRSA) clones respectively (Table 3).
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Table 3: Proportion of healthcare-associated and community-associated methicillin-resistant 
Staphylococcus aureus, Australia, 2020 by clone, onset, and Panton-Valentine leucocidin carriage 

MLST
Total

Onset
PVL positive

Hospital Community

n %a n %b n %b n %b

Healthcare-associated MRSA

ST22-IV [2B] (EMRSA-15) 59 12.9 16 27.1 43 72.9 0 –

ST239-III [3A] (Aus-2/3) 7 1.5 2 28.6 5 71.4 0 –

ST36-II [2A] (EMRSA-16) 1 0.2 0 – 1 100.0 0 –

ST5-II (NY/Japan) 1 0.2 1 100.0 0 – 0 –

ST8-II (EMRSA-1) 1 0.2 1 100.0 0 – 0 –

Total HA-MRSA 69 15.1 20 29.0 49 71.0 0 0.0

Community -associated MRSA

ST93-IV 100 21.9 12 12.0 88 88.0 99 99.0

ST5-IV 59 12.9 16 27.1 43 72.9 29 49.2

ST45-V 50 11 13 26.0 37 74.0 0 –

ST1-IV 29 6.4 7 24.1 22 75.9 0 –

ST30-IV 21 4.6 2 9.5 19 90.5 17 81.0

ST8-IV 16 3.5 2 12.5 14 87.5 12 75.0

ST97-IV 14 3.1 4 28.6 10 71.4 0 –

ST78-IV 10 2.2 4 40.0 6 60.0 0 –

ST953-IV 8 1.8 1 12.5 7 87.5 0 –

ST6-IV 7 1.5 4 57.1 3 42.9 0 –

ST188-IV 5 1.1 2 40.0 3 60.0 0 –

ST22-IV 5 1.1 1 20.0 4 80.0 5 100.0

ST59-IV 5 1.1 1 20.0 4 80.0 1 20.0

ST59-V 5 1.1 1 20.0 4 80.0 2 40.0

ST872-IV 5 1.1 2 40.0 3 60.0 0 –

ST88-IV 4 0.9 2 50.0 2 50.0 0 –

ST5-V 3 0.7 2 66.7 1 33.3 0 –

ST72-V 3 0.7 0 – 3 100.0 0 –

ST835-I 3 0.7 1 33.3 2 66.7 0 –

ST188-V 2 0.4 1 50.0 1 50.0 0 –

ST398-V 2 0.4 0 – 2 100.0 0 –

ST6145-V 2 0.4 1 50.0 1 50.0 0 –

ST6151-IV 2 0.4 0 – 2 100.0 2 100.0

ST672-V 2 0.4 1 50.0 1 50.0 0 –

ST834-IV 2 0.4 1 50.0 1 50.0 0 –

ST1232-V 1 0.2 1 100.0 0 – 1 100.0

ST12-V 1 0.2 1 100.0 0 – 0 –

ST149-IV 1 0.2 0 – 1 100.0 0 –

ST2250-IV 1 0.2 0 – 1 100.0 0 –
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MLST
Total

Onset
PVL positive

Hospital Community

n %a n %b n %b n %b

ST3841-IV 1 0.2 1 100.0 0 – 0 –

ST4197-IV 1 0.2 0 – 1 100.0 1 100.0

ST45-IV 1 0.2 0 – 1 100.0 0 –

ST5665-IV 1 0.2 1 100.0 0 – 0 –

ST5669-IV 1 0.2 1 100.0 0 – 0 –

ST6156-IV 1 0.2 0 – 1 100.0 0 –

ST6643-IV 1 0.2 0 – 1 100.0 0 –

ST672-IV 1 0.2 0 – 1 100.0 0 –

ST6957-V 1 0.2 0 – 1 100.0 0 –

ST6959-IV 1 0.2 0 – 1 100.0 0 –

ST6960-IV 1 0.2 0 – 1 100.0 0 –

ST6963-IV 1 0.2 0 – 1 100.0 0 –

ST6965-V 1 0.2 0 – 1 100.0 0 –

ST6967-IV 1 0.2 0 – 1 100.0 0 –

ST6968-IV 1 0.2 0 – 1 100.0 1 100.0

ST6973-V 1 0.2 1 100.0 0 – 0 –

ST6974-IV 1 0.2 0 – 1 100.0 0 –

ST73-IV 1 0.2 1 100.0 0 – 0 –

ST80-IV 1 0.2 0 – 1 100.0 0 –

Total CA-MRSA 387 84.9 88 65.6 299 19.3 170 43.9

Grand total 456 100.0 108 23.7a 348 72.3a 170 37.3a

a	 Percentage of all MRSA typed.

b	 Percentage of the strain.

Healthcare-associated methicillin-
resistant Staphylococcus aureus

For the 69 HA-MRSA isolates, 20 (29.0%) were 
classified as hospital-onset and 49 (71.0%) were 
classified as community-onset. Five HA-MRSA 
clones were identified: 59 isolates of ST22-IV 
[2B] (EMRSA-15) (12.9% of MRSA typed and 
2.3% of S. aureus); seven isolates of ST239-III 
[3A] (Aus -2/3 EMRSA) (1.5% and 0.3%), and 
one isolate each of ST5-II [2A] (NY/Japan), 
ST36-II [2A] (EMRSA-16) and ST8-II (Irish 
EMRSA-1) (0.2% and 0.04% each).

ST22-IV [2B] (EMRSA-15) was the dominant 
HA-MRSA clone in Australia in 2020, account-
ing for 85.5% of HA-MRSA, ranging from 0% in 
South Australia to 100% in Western Australia, 

Tasmania, and the Northern Territory (Table 
4). ST22-IV [2B] (EMRSA-15) is Panton-
Valentine leucocidin (PVL) negative and, using 
CLSI breakpoints, 98.3% and 54.2% were cip-
rofloxacin and erythromycin non-susceptible 
respectively. Overall, 27.1% of ST22-IV [2B] 
(EMRSA-15) were hospital-onset.

ST239-III [3A] (Aus-2/3 EMRSA) accounted 
for 10.1% of HA-MRSA and was isolated in 
Victoria (7.1%), New South Wales (11.5%) and 
Queensland (27.3%) (Table 4). PVL-negative 
ST239-III [3A] (Aus-2/3 EMRSA) were typically 
resistant to erythromycin (100%), cotrimoxa-
zole (100%), ciprofloxacin (100%), gentamicin 
(100%), tetracycline (100%) and clindamycin 
(85.7%). Overall, 28.6% of ST239-III [3A] (Aus-
2/3 EMRSA) were hospital-onset.
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Community-associated methicillin-
resistant Staphylococcus aureus

For the 387 CA-MRSA isolates, 88 episodes 
(22.7%) were classified as hospital-onset and 
299 (77.3%) as community-onset. Based on 
the multi-locus sequence type and the SCCmec 
type, 48 CA-MRSA clones were identified (Table 
3). Overall, 77.3% of CA-MRSA were classified 
into eight clones each having ten or more iso-
lates: 100 isolates of ST93-IV [2B] (Queensland 
CA-MRSA) (21.7% of MRSA typed and 3.6% of 
S. aureus); 59 isolates of ST5-IV [2B] (12.9% and 
2.2%); 50 isolates of ST45-V [5C2&5] (11.0% 
and 1.8%); 29 isolates of ST1-IV [2B] (6.4% and 
1.1%); 21 isolates of ST30-IV [2B] (4.6% and 
0.8%); 16 isolates of ST8-IV [2B] (3.5% and 
0.6%); 14 isolates of ST97-IV [2B] (3.1% and 
0.5%) and 10 isolates of ST78-IV [2B] (2.2% and 
0.4%).

ST93-IV [2B] (Queensland CA-MRSA) 
accounted for 25.8% of CA-MRSA, ranging 
from 0% in Tasmania and the Australian Capital 
Territory to 52.8% in the Northern Territory 
(Table 5). Typically PVL positive, ST93-IV [2B] 
(Queensland CA-MRSA) were resistant to the 
β-lactams only (78/100; 78.0%) or additionally 
resistant to erythromycin (12/100; 12.0%) or to 
erythromycin and clindamycin (9/100; 9.0%) 
and a single isolate to daptomycin. Overall, 
87.9% of ST93-IV [2B] were community-onset.

ST5-IV [2B] accounted for 15.2% of CA-MRSA 
and was isolated in all jurisdictions of Australia 
except the Australian Capital Territory, rang-
ing from 10.5% in Queensland to 27.8% in the 
Northern Territory (Table 5). Overall, 49.2% 
and 50.8% of ST5-IV [2B] were PVL positive and 
PVL negative respectively. PVL-positive ST5-IV 
[2B] was resistant to the β-lactams only (22/29; 
75.9%), with other isolates additionally resistant 
to erythromycin (3/29; 10.3%); to erythromycin, 
tetracycline and cotrimoxazole (2/29; 6.9%); 
and single isolates resistant to cotrimoxazole 
and gentamicin alone. PVL-negative ST5-IV 
[2B] was resistant to the β-lactams only (16/30; 
53.3%) or additionally resistant to fusidic acid 
(8/30; 26.7%); to erythromycin (3/30; 10.0%); 

to tetracycline (2/30; 6.7%); and a single isolate 
resistant to ciprofloxacin. Overall 72.9% of 
ST5-IV [2B] were community-onset.

ST45-V [5C2&5] accounted for 12.9% of 
CA-MRSA and was isolated primarily in New 
South Wales and Victoria (Table 5). All isolates 
were PVL negative. In addition to the β-lactams 
and ciprofloxacin, isolates were resistant to 
erythromycin, gentamicin and tetracycline 
(14/50; 28.0%); to erythromycin, and tetra-
cycline (6/50; 12.0%); to erythromycin and 
gentamicin (5/50; 10.0%); to gentamicin and 
tetracycline (5/50; 10.0%); to gentamicin (4/50; 
8.0%); to clindamycin, erythromycin, gen-
tamicin and tetracycline (4/50; 8.0%); to clin-
damycin, erythromycin and gentamicin (2/50; 
4.0%) and single isolates resistant to clindamy-
cin, erythromycin, tetracycline and cotrimoxa-
zole; to erythromycin, fusidic acid, gentamicin 
and tetracycline; to erythromycin, fusidic acid, 
and tetracycline;  to clindamycin, erythromycin 
and tetracycline; to clindamycin and erythro-
mycin; to erythromycin, fusidic acid, and tet-
racycline; and to tetracycline. Overall, 74.0% of 
ST45-V [5C2&5] were community-onset.

ST1-IV [2B] accounted for 7.5% of CA-MRSA 
and was isolated in all regions of Australia except 
the Australian Capital Territory, ranging from 
1.9% in Victoria to 12.5% in South Australia 
(Table 5). All isolates were PVL negative, 58.6% 
of isolates were resistant to the β-lactams only 
(17/29), with others additionally resistant to 
erythromycin (5/29; 17.4%) or to ciprofloxacin 
and erythromycin (2/29; 6.9%). Single isolates 
were resistant to tetracycline; to fusidic acid; 
erythromycin and clindamycin; to erythromy-
cin and tetracycline; and to erythromycin and 
cotrimoxazole. Overall, 75.9% of ST1-IV [2B] 
were community-onset.

ST30-IV [2B] accounted for 5.4% of CA-MRSA 
and was isolated in all jurisdictions of Australia 
except Tasmania, ranging from 2.8% in the 
Northern Territory to 7.0% in Queensland 
(Table 5). ST30-IV [2B], of which 81% were PVL 
positive, was typically resistant to the β-lactams 
only (17/21, 81.0%). Three isolates (14.3%) 
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were additionally resistant to erythromycin 
and clindamycin; a single isolate to erythro-
mycin. Overall, 90.5% of ST30-IV [2B] were 
community-onset.

ST8-IV [2B] accounted for 4.1% of CA-MRSA 
and was isolated in New South Wales, Victoria, 
Queensland and Western Australia (Table 
5).  Thirteen isolates of ST8-IV [2B] (81.2%) 
were PVL negative. Nine isolates (56.2%) were 
resistant to the β-lactams only. Three isolates 
(18.8%) were also resistant to erythromycin and 
ciprofloxacin. Single isolates were resistant to 
ciprofloxacin; to erythromycin; to high-level 
mupirocin; and to erythromycin, ciprofloxacin 
and high-level mupirocin. Overall, 87.5% of 
ST8-IV [2B] were community-onset.

ST97-IV [2B] accounted for 3.6% of CA-MRSA 
and was isolated from all jurisdictions except 
South Australia and the Australian Capital 
Territory, ranging from 2.3% in Western 
Australia to 5.0% in New South Wales (Table 
5). All isolates of ST97-IV [2B] were PVL 
negative and resistant to the β-lactams only. 
Overall, 71.4% of ST97-IV [2B] isolates were 
community-onset.

ST78-IV [2B] accounted for 2.6% of CA-MRSA 
and was isolated from New South Wales, Victoria 
and Western Australia (Table 5). All isolates of 
ST78-IV [2B] were PVL negative. Two isolates 
were resistant to the β-lactams only. Seven 

isolates were additionally resistant to erythro-
mycin (7/10; 70.0%) and one isolate was resist-
ant to erythromycin and tetracycline. Overall 
60.0% of ST78-IV [2B] were community-onset.

Overall, 84.5% of CA-MRSA isolates were non-
multi-resistant, including 54.5% isolates resist-
ant to the β-lactams only. A significant increase 
was seen in multi-resistant CA-MRSA isolates 
in ASSOP 2020 (15.5%) from 9.2% in ASSOP 
2013.11 Multi-resistance was primarily due to 
the ST45-V [5C2&5] clone.

Panton-Valentine leucocidin

Overall, 170 (43.9%) of MRSA were PVL posi-
tive. All were CA-MRSA (Table 3).

Discussion

The AGAR surveillance programmes collect 
data on antimicrobial resistance, focussing on 
bloodstream infections caused by S. aureus, 
Enterococcus, and gram-negative bacilli 
including the Enterobacterales, Pseudomonas 
aeruginosa and Acinetobacter species. All data 
collected in the AGAR programs are generated 
as part of routine patient care in Australia, with 
most available through laboratory and hospital 
bed management information systems. Isolates 
are referred to a central laboratory where strain 
and antimicrobial resistance determinant char-
acterisation is performed. As the programmes 

Table 4: The number and proportion of healthcare-associated methicillin-resistant Staphylococcus 
aureus (MRSA) multilocus sequence types (MLST), Australia, 2020, by jurisdictiona

MLST
ACT NSW NT Qld SA Tas. Vic. WA Australia

n % n % n % n % n % n % n % n % n %

ST22-IV 3 100 22 84.6 2 100 8 72.7 0 — 4 100 11 78.6 9 100 59 85.5

ST239-III 0 0 3 11.5 0 0 3 27.3 0 — 0 0 1 7.1 0 0 7 10.1

ST36-II 0 0 0 0 0 0 0 0 0 — 0 0 1 7.1 0 0 1 1.4

ST5-II 0 0 1 3.8 0 0 0 0 0 — 0 0 0 0 0 0 1 1.4

ST8-II 0 0 0 0 0 0 0 0 0 — 0 0 1 7.1 0 0 1 1.4

Total 3 26 2 11 0 4 14 9 69

a	 ACT: Australian Capital Territory; NSW: New South Wales; NT: Northern Territory; Qld: Queensland; SA: South Australia; Tas: Tasmania; 

Vic.: Victoria; WA: Western Australia.
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Table 5: The number and proportion of the major community-associated methicillin-resistant 
Staphylococcus aureus (MRSA) multilocus sequence types, Australia (≥ 10 isolates), 2020, by 
jurisdictiona

MLST
ACTb NSW NT Qld SA Tas.b Vic. WA Australia

n % n % n % n % n % n % n % n % n %

ST93-IV 0 — 11 9.1 19 52.8 13 22.8 8 33.3 0 — 17 31.5 32 36.8 100 25.8

ST5-IV 0 — 16 13.2 10 27.8 6 10.5 3 12.5 1 — 6 11.1 17 19.5 59 15.2

ST45-V 2 — 36 29.8 0 0 0 0 1 4.2 0 — 11 20.4 0 0 50 12.9

ST1-IV 0 — 10 8.3 1 2.8 7 12.3 3 12.5 1 — 1 1.9 6 6.9 29 7.5

ST30-IV 1 — 8 6.6 1 2.8 4 7 1 4.2 0 — 3 5.6 3 3.4 21 5.4

ST8-IV 0 — 8 6.6 0 0 3 5.3 0 0 0 — 1 1.9 4 4.6 16 4.1

ST97-IV 0 — 6 5 1 2.8 2 3.5 0 0 1 — 2 3.7 2 2.3 14 3.6

ST78-IV 0 — 1 0.8 0 0 0 0 0 0 0 — 2 3.7 7 8 10 2.6

Other 2 — 25 20.7 4 11.1 22 38.6 8 33.3 0 — 11 20.4 6 18.4 88 22.7

Total 5 121 36 57 24 3 54 87 387

a	 ACT: Australian Capital Territory; NSW: New South Wales; NT: Northern Territory; Qld: Queensland; SA: South Australia; Tas: Tasmania; 

Vic.: Victoria; WA: Western Australia.

b	 Percentages not calculated for jurisdictions with < 10 CA-MRSA isolates in total.

are similar to those conducted in Europe,18 
comparison of Australian antimicrobial resist-
ance data with other countries is possible.

In ASSOP 2020, methicillin resistance was 
found in 17.6% (95% CI: 16.2–19.1) of the 2,734 
SAB episodes. In the 2019 European Centre 
for Disease Prevention and Control (ECDC) 
SAB surveillance program, the European 
Union/European Economic Area (EU/EEA) 
population-weighted mean percentage of S. 
aureus resistant to methicillin was 15.5% (95% 
CI: 15–16), ranging from 1.1% (95% CI: 0.6–1.7) 
in Norway to 46.7% (95% CI: 42.7–50.1) in 
Romania.18

In Europe, the EU/EEA population-weighted 
mean percentage has significantly decreased 
from 23.2% in 2009 to 15.5% in 2019. A decrease 
in methicillin-resistant SAB has been reported 
in several parts of the world,19,20 and is believed 
to be due to the implementation of antimicro-
bial stewardship and a package of improved 
infection control procedures including hand 
hygiene, MRSA screening and decolonisation, 

patient isolation and infection prevention care 
bundles.21–25 The percentage of methicillin-
resistant SAB in Australia, however, has not 
decreased significantly over the eight years of 
ASSOP, ranging from 18.3% in 2013 to 17.6% 
in 2020 (p = 0.06). Nonetheless, while a a sig-
nificant decrease in MRSA bacteraemia has not 
been seen in Australia, significant decreases in 
HA-MRSA from 41.0% to 15.1% (p < 0.0001) 
and in hospital-onset MRSA from 38.0% to 
23.1% (p < 0.0001) have been observed over the 
eight ASSOP surveys.11,26–31 Over the same time 
period, significant increases in CA-MRSA from 
59.0% to 84.9% (p < 0.0001) and in community-
onset MRSA from 61.1% to 79.6% (p < 0.0001) 
have been observed. Because of the increased 
burden of CA-MRSA bacteraemia in Australia, 
a significant reduction in the overall proportion 
of SAB due to MRSA may prove problematic.

In ASSOP 2020, the all-cause mortality at 
30-days was 13.5% (95% CI: 12.1–15.0%). No 
significant difference in mortality was observed 
between methicillin-resistant SAB and methi-
cillin-susceptible SAB (p = 0.6).
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With the exception of the β-lactams and eryth-
romycin, antimicrobial resistance in MSSA 
remains rare. However, for MRSA, in addition 
to resistance to the β-lactams, approximately 
33% of isolates were resistant to erythromycin 
and ciprofloxacin and approximately 13% 
were resistant to tetracycline and gentamicin. 
Resistance was largely attributable to two 
HA-MRSA clones, ST22-IV [2B] (EMRSA-15), 
which is typically ciprofloxacin and erythro-
mycin resistant, and ST239-III [3A] (Aus-2/3 
EMRSA) which is typically erythromycin, 
clindamycin, ciprofloxacin, cotrimoxazole, tet-
racycline and gentamicin resistant. In the early 
1980s, the multi-resistant ST239-III [3A] (Aus-
2/3 EMRSA) was the dominant HA-MRSA clone 
in Australian hospitals. However, in 2013 the 
first ASSOP survey showed that ST22-IV [2B] 
(EMRSA-15) was replacing ST239-III [3A] (Aus-
2/3 EMRSA) as the most prevalent HA-MRSA, 
and this change has occurred throughout most 
of the country.32 In ASSOP 2020, approximately 
12.9% of MRSA were characterised as ST22-IV 
[2B] (EMRSA-15).

In ASSOP 2020, ST93-IV [2B] (Queensland 
CA-MRSA) remained the predominant 
CA-MRSA clone (25.8%) in Australia. 
CA-MRSA, in particular the ST45-V [5C2&5] 
clone (11.0% of MRSA), has acquired multiple 
antimicrobial resistance determinants includ-
ing ciprofloxacin, erythromycin, clindamycin, 
gentamicin and tetracycline.

Approximately 22.7% of SAB caused by 
CA-MRSA was hospital-onset. As transmis-
sion of CA-MRSA in Australian hospitals is 
thought to be rare,33,34 it is likely that many of 
the hospital-onset CA-MRSA SAB infections 
reported in ASSOP 2020 were caused by the 
patient’s own colonising strains acquired prior 
to admission. In Australia, CA-MRSA clones 
such as PVL-positive ST93-IV [2B] (Queensland 
CA-MRSA) are well established in the commu-
nity and therefore it is important to monitor 
antimicrobial resistance patterns in both com-
munity- and healthcare-associated SAB, as this 
information will guide therapeutic practices in 
treating S. aureus sepsis.

In conclusion, ASSOP 2020 has demonstrated 
that antimicrobial resistance in SAB in Australia 
continues to be a significant problem and is 
associated with a high mortality. This may be 
due, in part, to the high prevalence of com-
munity-associated methicillin-resistant SAB in 
Australia, which is higher than most EU/EEA 
countries. Consequently, MRSA must remain a 
public health priority; continuous surveillance 
of SAB and its outcomes and the implementa-
tion of comprehensive MRSA strategies target-
ing hospitals and long-term care facilities are 
essential.
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